
Code
smarter,
not harder
The DevOps guide to accelerating
developer productivity

WHITE PAPER 2023

Code smarter, not harderWHITE PAPER2

It’s little wonder that business leaders

want to maximize developer productivity.

Talented development teams bring

tremendous value to an organization. With

developers in short supply and looming

economic uncertainty, getting more out of

existing teams is a competitive advantage.

The pitfall is that developers aren’t

machines. You can’t just turn a dial and

crank them into high gear. Treating

developers like gears in a machine leads

to toxic practices (we’re looking at you,

developer ranking chart) that ultimately

hurt productivity.

Great development and engineering

teams aren’t built; they’re grown. Unlike

building a bridge or a skyscraper where

you can predict exactly what’s needed and

use materials that behave in a predictable

way, software and development teams

evolve and change in response to their

environment.

Intro

We build static things; we grow things

that we want to evolve. And when it comes

to improving developer productivity, the

investment is well worth it. McKinsey

& Company found that the savings

produced by reducing each developer’s

wasted time by five minutes on a team of

500 developers could support a full team

of developers working on standardization.

An engineering manager
works more like a gardener
— tending an environment to help their

team and products flourish in what will

ultimately be unexpected ways.

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience

Code smarter, not harderWHITE PAPER3

In Garden’s first survey of more than

400 developers, commissioned from

an independent research firm, we dug

deep into the developer experience to

identify where time is wasted and what

frustrations developers face.

In this paper, we look at solutions DevOps

and engineering managers can implement

at the enterprise level to reduce friction

and increase developer productivity.

We’ll explore where productivity is lost

and how engineering managers can

weed those problems out to provide the

right conditions for productivity to grow.

It’s time to get rid of things that are

throwing shade on your developers’ day-

to-day work. By making more time for

the type of work that makes them happy

(think: more coding, less of everything

else) you’ll see their productivity multiply.

https://garden.io/resource-download
https://garden.io/resource-download

TA
B

LE
 O

F C
O

N
T

E
N

T
S

01
02
03
04
05
06
07
08

How more complex systems
impact productivity

Putting productivity
metrics in perspective

Where is productivity
lost and what’s the cost?

What would happen if
developers had more time?

Digging deeper into the developer
experience and productivity

Four ways to cultivate happier,
more productive developers

The rise of platform engineering
and productivity tools

Increase your team’s
productivity now with Garden

Code smarter, not harderWHITE PAPER5

How more complex systems
impact productivity

Application complexity is an issue that most
organizations need to deal with, and how you deal
with it will impact the future of your application, the
health and stability of your development organization,
and the future of your business.

— Lee Atchison, InfoWorld, “A cure for complexity in software development”

The proliferation of cloud-native

capabilities offers tantalizing possibilities

for building containerized architecture,

unique digital experiences, near-instant

data processing, AI and ML applications.

Developers are experimenting with and

adopting new tech at a breakneck pace.

This fuels innovation, but it also creates

complex systems that evolve organically

— and this can get a little messy.

In a recent study on developer velocity

at work, McKinsey & Company found

that companies use as many as 50

different tools. And these tools can be

extremely complicated: Kubernetes is

barely a decade old and developers

who’ve mastered it are in limited supply.

Yet 70% of IT leaders said they work

for organizations that use Kubernetes,

according to Red Hat’s State of Enterprise

Open Source Report.

More time wrangling tools means less time coding

We adopt new tools because they offer exciting possibilities, but those benefits come at a

cost. Garden found that developers spend 14 to 16 hours every week wrangling internal

tools, setting up environments, and waiting for tests, builds, and pipelines. Developers at

organizations using Kubernetes were at the higher end of that range.

https://www.infoworld.com/article/3642835/a-cure-for-complexity-in-software-development.html
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-at-work-key-lessons-from-industry-digital-leaders
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-at-work-key-lessons-from-industry-digital-leaders
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022?intcmp=701f2000000tjyaAAA&extIdCarryOver=true&sc_cid=701f2000001OH8HAAW
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022?intcmp=701f2000000tjyaAAA&extIdCarryOver=true&sc_cid=701f2000001OH8HAAW
https://garden.io/resource-download

Code smarter, not harderWHITE PAPER6

More time spent wrangling tools means less time coding. Similar to Garden’s findings,

ActiveState observed an approximate 20% decrease in time spent programming between

their 2018 and 2019 surveys. The number of respondents who spend eight or more hours

a day programming dropped by almost 50% in the same timeframe.

<1 hr 1 hr 2-4 hrs 5-7 hrs 8+ hrs

Most developers reported spending four hours a day or less programming.
Source: ActiveState, Developer Survey 2019

~10% ~12.5% ~39% ~28% ~10.5%

Code smarter, not harderWHITE PAPER6

How many hours per day do developers spend on programming?

https://www.activestate.com/resources/white-papers/developer-survey-2019-open-source-runtime-pains/
https://www.activestate.com/resources/white-papers/developer-survey-2019-open-source-runtime-pains/

Code smarter, not harderWHITE PAPER7

Putting productivity metrics
in perspective

It’s hard to talk about productivity without

metrics, but developer metrics are often

associated with toxic practices. Let’s be

clear: productivity metrics should be used

to measure impact or identify areas for

improvement — not to spur developers to

code harder and faster. We’re pretty sure

business leaders and customers care

more about business outcomes, such as

more frequent deployments and fewer

incidents and rollbacks, than they do

about lines of code.

Healthy vs. harmful use of metrics

No business can simply “metric” their way to sustainable, higher productivity. Metrics help

organizations, teams and individuals figure out what they’re doing well, where they can

improve and how changes impact performance. They help managers understand how

different parts of the process are working, predict timelines and identify blockers.

The goal of tracking and analyzing software metrics
is to determine the quality of the current product or
process, improve that quality and predict the quality
once the software development project is complete.

— Alexandra Altvater, Stackify, “What Are Software Metrics and How Can You

Track Them?”

While metrics are helpful, they can be misused and they rarely tell the whole story.

Focusing too narrowly on one metric, or one type of metric, can be misleading and

detrimental to improvement efforts. A common example of this is measuring lines of code.

This can inadvertently reward developers who write a lot of low-quality or simplistic code,

and punish those who accomplish the same thing more efficiently.

https://stackify.com/track-software-metrics/
https://stackify.com/track-software-metrics/

Code smarter, not harderWHITE PAPER8

We want developers to write elegant code that works well and is easy to maintain. We

want high-quality software. Focusing on a narrow measure like lines of code can result in a

sort of busy work that artificially mimics productivity, but fails to result in better outcomes.

Choosing the right metrics

No one seems to agree on one golden metric that works for every business. A good

practice is to choose some metrics that focus on speed and velocity and some that focus

on quality and stability. This prevents unintentional trade-offs.

Google Cloud’s DevOps Research and Assessment (DORA) team identified five metrics

that strike this balance. These metrics are based on eight years of research and measure

both software delivery performance and operational performance. Teams that strike this

balance and excel in all five measures exhibit exceptional organizational performance.

DORA’s 2022 State of DevOps report highlights the importance of measuring different

aspects of performance. “We have evidence that suggests that delivery performance

can be detrimental to organizational performance if not paired with strong operational

performance,” write the authors to explain why they added a fifth metric: reliability.

Business outcome

Organizational performance

Software delivery performance

Throughput (speed / velocity) Stability

Lead time Deployment
frequency

Time to
restore service

Change
failure rate

Operational performance

Quality

Reliability (ability to meet expectations)

What it measures

Metric

How individual metrics can ladder up to a balanced scorecard: speed and velocity are weighed with quality
and stability to prevent unintentional trade-offs.
Source: 2022 Accelerate State of DevOps Report

https://cloud.google.com/devops/state-of-devops/
https://cloud.google.com/devops/state-of-devops/

Code smarter, not harderWHITE PAPER9

Metrics within the metrics

While the DORA metrics are a valuable tool in identifying areas for improvement in DevOps,

developers are often more focused on the early part of the process. Meanwhile, engineering

managers are focused on the full cycle: What’s the delta between when a developer thinks

they’re done (they’ve written and delivered code) and when they’re actually done (code has

passed all the tests or is in production)? How long does each step take?

Measuring how the early part of the process is working can help identify areas for

improvement that can lower change failure, increase deployment frequency and lower lead

time for changes. These metrics can include time between starting a new branch and

getting a pull request merged, time between starting new work and getting the test to

pass, and how frequently you need to push to get code done and working.

Looking at underlying metrics that impact high-level metrics can help teams improve

productivity by making small changes in the right places.

Instead of managers challenging teams to deploy
more frequently (and leaving them wondering how),
you can identify and remove specific roadblocks to
reduce friction.

Then celebrate the results.

Code smarter, not harderWHITE PAPER9

Code smarter, not harderWHITE PAPER10

Where is productivity lost
and what’s the cost?

Increasing productivity is, in part, about

reducing time wasted. We’re not talking

about long bathroom breaks or sharing a

funny TikTok video with coworkers. We’re

talking about waste that’s become

an inherent part of the process. Process

inefficiencies might seem small or be

overlooked as “business as usual,” but

they frustrate developers and add up to

hours of wasted time.

More than half of engineers reported delays due to inefficient processes:

Source: Haystack, Study to understand the impact of COVID-19 on Software Engineers

to a great extent to a moderate extent to a small extent not at all don’t know

22%

33%

25%

18%

2%

Waiting is the hardest part

Garden estimated that more than $61 billion in developer productivity and value is lost

due to inefficiencies in the software development pipeline in this post about our earlier

research.

https://haystack-books.s3.amazonaws.com/Study+to+understand+the+impact+of+COVID-19+on+Software+Engineers+-+Full+Report.pdf
https://garden.io/blog/developer-productivity-survey-report

Code smarter, not harderWHITE PAPER11

We can use the same method to calculate costs in terms of wasted time for individual

businesses and teams:

The 2021 median salary from the US Bureau of Labor Statistics for software

developers, quality assurance analysts and testers was $109,020 annually,

equivalent to $52.41 per hour.

McKinsey uses 500 developers as an example team size.

Formula: [hours wasted per week] x $52.41 x [52 weeks per year] = annual value

of wasted time

Applied here, we can see that a team of developers typically spends 4.9 to 6.3 hours

each week waiting. That’s a cumulative 2,450 to 3,150 hours each week — at a cost of

$7–9 million per year.

For our last whitepaper, we surveyed 400 developers and DevOps team members. We

asked which tasks they considered to be time wasted. Waiting for builds and tests outside

CI pipelines (35%) and waiting for pipelines to run (35%) were at the top of the list.

Developers are tired of throwing things over the wall
and waiting for a response.

Which of the tasks do you consider to be time wasted? Top 5 responses

Waiting for builds and tests
(outside of CI pipelines)

Waiting for pipelines
(i.e. CI to run)

Writing tests

Setting up, maintaining and
debugging pipelines/automation

Planning work,
sprint planning

0 355 10 15 20 25 30

35%

35%

27%

21%

20%

Source: Garden original research

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm

Code smarter, not harderWHITE PAPER12

How many hours per week are spent on the following tasks?
(on average)

Planning work, sprint
planning

Writing & maintaining
internal tooling

Setting up, maintaining &
debugging pipelines / automation

Waiting for pipelines
(i.e. CI to run)

Waiting for builds & tests
(outside of CI pipelines)

Setting up dev environments

Using Kubernetes (249 respondents) Not using Kubernetes (146 respondents)

Writing tests

Writing application code

3.8

3.4

3.3

3.0

3.3

3.5

3.1

4.3

3.0

2.9

3.0

2.2

2.7

3.5

3.1

5.9

0 1 2 3 4 5 6

Developers don’t just spend their time on productive work, such as planning and writing code. They’re also
stuck waiting for pipelines, builds and tests (in pink). And there are a number of requirements (in purple),
such as writing tests, maintaining internal tooling, debugging and setting up dev environments, that can be
automated or substantially time-reduced with better tooling, such as Garden.

Managing complex systems takes too much time

The time needed to manage complex systems surpasses time spent coding for many

developers. In an ActiveState developer survey, 62% of developers said they spent part

to all of their time managing dependencies, and 61% reported spending part to all of their

time building a library or package.

https://www.activestate.com/resources/white-papers/developer-survey-2019-open-source-runtime-pains/

Code smarter, not harderWHITE PAPER13

0

0

1

1

2

2

3

3

4

4

This is a symptom of trying to apply the same practices that worked ten years ago to more

complex systems. Developers are spending valuable time acting as the glue between

systems and trying to set up the environments they need.

We’ve found that it’s possible to save three to four hours per developer on these tasks

each week. For a team of 200 developers, three hours saved weekly is more than 30,000

hours annually — equivalent to gaining the productivity of 15 extra developers, or more

than $1.7 million per year.

Centrally managed & configured
(e.g. by a platform team)
197 respondents

Centrally managed & configured
(e.g. by a platform team)
163 respondents

Individually managed & operated
(e.g. by each application team)
115 respondents

Individually managed & operated
(e.g. by each application team)
149 respondents

Centrally managed but individually
configured by each application team
74 respondents

Centrally managed but individually
configured by each application team
84 respondents

3.35

3.54

2.87

3.25

3.33

3.73

How many hours per week are spent setting up, maintaining and
debugging pipelines / automation if CI / CD is...

How many hours per week are spent setting up dev environments if
dev / testing environments are...

Source: Garden original research

Code smarter, not harderWHITE PAPER14

The cost of context switching is higher than you think

Once developers have shipped code off to CI/CD, they’re obliged to wait … and during that

downtime, they’re typically hopping between different tools to find something else to do.

This context-switching takes up far more time and mental bandwidth than most people

imagine.

In a study of 20 teams at Fortune 500 companies, people took a little over two seconds

to switch applications, but they switched applications almost 1,200 times a day, Harvard

Business Review reported. That adds up to just under four hours a week. And that’s just

the physical time needed to switch.

The math on this also paints a picture of wait and waste: 4 hours of context switching for

each of 500 developers will cost a company $5 million per year in lost productivity — not

to mention lost revenue, as the wait time further delays the product’s time to market.

In addition to the almost four hours people spend switching applications, we also need to

consider the time it takes to refocus on a task. Researchers at Georgia Tech looked at this

specifically in developers. In most sessions, it took developers several minutes to make

their first edit after resuming a task, but in 30% of the sessions this “edit lag” was over 30

minutes long.

Developers have a lot more than programming on
their plate

Developers spend a lot of time on non-programming tasks. While some of these tasks

are no doubt necessary, being more cognizant and intentional about non-programming

time can help teams make small, but valuable, gains in productivity.

https://hbr.org/2022/08/how-much-time-and-energy-do-we-waste-toggling-between-applications
https://hbr.org/2022/08/how-much-time-and-energy-do-we-waste-toggling-between-applications
https://web.archive.org/web/20150206014318/https://www.cc.gatech.edu/~vector/papers/sqj.pdf

Code smarter, not harderWHITE PAPER15 Code smarter, not harderWHITE PAPER15

Bulk of non-
programming

time

Source: Developer Survey 2019 - Open Source Runtime Pains - ActiveState

Other

Software design / architecturing

Attending standups / meetings

Testing

Investigating & resolving bugs

Performing maintenance

Investigating security issues

Getting buy-in / socializing ideas

Creating new instances / environments

Combination of some or all below

What would happen if
developers had more time?
While it’s possible to put a dollar value on lost productivity, the real value is in what

developers would do with more time. So what would developers do if you freed them

from all the waiting and unnecessarily complex system management tasks?

We asked them:

of respondents
would develop new
products & services

would improve speed
& delivery of existing
products & services

would improve
security for existing
products and services

17.2%

44%

49% 46% 44%

11.4%

8.2%

6.5%

5.8%

2.8%
1.7%
1.3%
1.1%

https://www.activestate.com/resources/white-papers/developer-survey-2019-open-source-runtime-pains/

Code smarter, not harderWHITE PAPER16

Digging deeper into the
developer experience and
productivity

It’s easy to make the connection between

how developers spend their time and

productivity. Freeing developers to

spend more time on more productive

tasks equals more productivity. But

there’s another component at play here:

developer happiness.

Researchers at the University of Oxford

found that happy workers are 13% more

productive compared to discontent

colleagues working the same number

of hours. Forbes furthered this research

with a focus on developers and found

that happy developers are 1.8 times more

likely to deploy to production multiple

times a day compared to their grumpier

counterparts. Now that’s a nice way to

improve your deployment frequency!

What’s more, Forbes found that

Putting DX at the center of their efforts can help
organizations improve employee attraction and
retention, enhance security and quality, and increase
developer productivity.

McKinsey & Company, “Why your IT organization should prioritize developer

experience”

happy devs in a mature
devops organization are 32%
more likely to recommend
their company to others.

https://www.ox.ac.uk/news/2019-10-24-happy-workers-are-13-more-productive
https://www.forbes.com/sites/forbestechcouncil/2020/05/20/five-reasons-happy-developers-build-in-better-security/?sh=701010142a69
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/why-your-it-organization-should-prioritize-developer-experience

Code smarter, not harderWHITE PAPER17

More productive teams are happier

High-performing software engineering teams deliver
53% better outcomes in employee experience and
productivity compared with low-performing teams.

2020 Gartner Software Engineering Team Effectiveness Survey

It turns out the things that make developers happy make engineering managers and

companies happy too. Over 92% of developers in mature DevOps organizations showed

high levels of job satisfaction, according to Forbes. Compare that to only 61% of

developers in immature DevOps practices.

Developers are happier when they feel more productive. In fact, feeling unproductive at

work was the number one (45%) cause of unhappiness among developers — even above

salary, according to a StackOverflow survey on developer happiness.

When we asked developers what’s frustrating them at work, it wasn’t surprising to see

that factors related to productivity (or a lack thereof) were high on the list. Developers

know their time is valuable and it doesn’t feel good to spend that time waiting for

feedback, pipelines and builds.

https://www.gartner.com/smarterwithgartner/3-ways-to-make-your-software-engineering-team-50-more-effective
https://www.forbes.com/sites/forbestechcouncil/2020/05/20/five-reasons-happy-developers-build-in-better-security/?sh=701010142a69
https://stackoverflow.blog/2022/03/17/new-data-what-makes-developers-happy-at-work/

Code smarter, not harderWHITE PAPER18

Percentage of respondents frustrated by daily tasks

Waiting for CI pipelines to run

Waiting for builds and tests
outside of CI pipelines

Setting up, maintaining and
debugging pipelines / automation

Setting up dev environments

Writing and maintaining internal
tooling

Planning work, spring planning

Writing tests

Writing application code

0 8020 40 60

76%

74%

71%

61%

66%

60%

65%

58%

Source: Garden original research

Which of the following cause the most frustration in your job?

Communication between
teams & functional
groups is difficult

Inadequate tooling and processes
to support remote work

Slow feedback
loops during the
development process

Lack of direction from upper
management on strategic priorities

Lack of flexibility in
choosing tools

Solving solved problems (building
tools which don’t add additional
value to our core business)

Which daily tasks contribute to
developer frustration?

55% 46%

54% 44%

49% 40%

Code smarter, not harderWHITE PAPER19

Four ways to cultivate happier,
more productive developers

Remove roadblocks
Analysts at Gartner and McKinsey both recommend a “servant-leadership” approach that

focuses on removing roadblocks and empowering teams to be successful. “When leaders

identify and resolve roadblocks, for example, their teams are 16% more effective. Likewise,

when leaders take on coordination with stakeholders like project managers or governance

partners, they up team effectiveness by another 11%,” writes Laura Starita, in Garner’s

“3 Ways to Make Your Software Engineering Team 50% More Effective”.

Empower developers
Developers know where their time is wasted and can be valuable partners in creating better

standards and processes. Involving developers in standard setting makes them 23% more

effective than their counterparts who don’t participate in standard setting, wrote Starita.

Make work a happy place (psychological safety)
Toxic metrics and pushing developers to perform better without improving the process or

their experience are unfortunately still problems in the industry. Creating a safe and happy

workplace is critical to helping developers do their best work and be more productive. The

most important cultural attribute is psychological safety, according to research on developer

velocity by McKinsey & Company. This means protecting developers’ ability to experiment

and fail, and investing in tools and systems that minimize the cost of those failures.

Invest in best-in-class tools
McKinsey & Company identified best-in-class tools as the top contributor to business

success — enabling greater productivity, visibility, and coordination. Yet only 5% of

executives ranked tools as one of their top-three software enablers. “The underinvestment

in tools across the development life cycle is one reason so many companies struggle with

“black box” issues,” write researchers in “Developer Velocity: How software excellence

fuels business performance.”

1

2

3

4

https://www.gartner.com/smarterwithgartner/3-ways-to-make-your-software-engineering-team-50-more-effective
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.gartner.com/smarterwithgartner/3-ways-to-make-your-software-engineering-team-50-more-effective
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance

Code smarter, not harderWHITE PAPER20

The rise of platform
engineering and
productivity tools

Gartner expects that by 2026, 80%

of software engineering organizations

will establish platform teams. These

teams might be called different things —

DevOps, developer experience, developer

tooling or developer enablement teams

— but their purpose is similar. They’re

tasked with optimizing the software

delivery process by reducing complexity

and simplifying the way developers

access and use the tools they need.

These specialized teams focus on creating

and maintaining an operating platform

— a tool or collection of tools that sit

between developers and the tools they

need. The goal is to create self-service

capabilities that reduce friction and

overhead for developers.

For the organization, such platforms encourage
consistency and efficiency. For the developer, they
provide a welcome relief from the management of
delivery pipelines and low-level infrastructure.

Gartner 2022: What Is Platform Engineering, and What Does It Do?

Build vs. buy

As with any tool that could potentially be built in-house, there’s a build vs. buy debate

around developer platforms.

Realistically, companies with complex setups or lots of legacy and bespoke tools aren’t

going to be able to buy something that does everything they need. On the other hand,

https://www.gartner.com/en/articles/what-is-platform-engineering
https://www.gartner.com/en/articles/what-is-platform-engineering

Code smarter, not harderWHITE PAPER21

Industry experts echo this advice:

“Each platform team needs to focus on the needs of the company and avoid

building in-house alternatives to tools that can be easily bought. Rather than

focusing your energy on generic needs that can be met using pre-existing products,

think about what your differentiator is within the industry.” 8 Ways to Build Platform

Engineering Teams | Fellow.app

“It doesn’t matter if your homegrown CI/CD solution is superior today, commercial

vendors will catch up eventually. Platform teams should always ask what is their

differentiator. Instead of building in-house alternatives to a CI system or a metrics

dashboard and compete against businesses that have 20 or 50 times their capacity,

they should focus on the specific needs of their organization and tailor off-the-shelf

solutions to their requirements.” Gartner 2022: What Is Platform Engineering, and

What Does It Do?

Given the value of even small gains in productivity, tools that help developers do more

will pay for themselves. Buying tools enables you to deliver benefits to your organization

sooner. No one wants to spend years building the perfect platform — only to have a

competitor buy the same capabilities off the shelf.

building from scratch can take years. One big box retailer with a team of 3,000 developers

told us they spent the last three years building internal tooling for platform engineering …

and they’re still building.

Instead of spending years to create software that’s not part of the core business purpose

(the retailer, for example, needs to focus on developing the digital experience for its end

customers, not on the developer experience), platform engineers can buy key components

This reduces the surface area of what they need to
build and maintain in-house, allowing them to focus
on components that differentiate the business.

https://fellow.app/blog/leadership/ways-to-build-platform-engineering-teams/
https://fellow.app/blog/leadership/ways-to-build-platform-engineering-teams/
https://www.gartner.com/en/articles/what-is-platform-engineering
https://www.gartner.com/en/articles/what-is-platform-engineering

Code smarter, not harderWHITE PAPER22

Do productivity tools work?

We’re so used to the way things work (or don’t work) now, it can be hard to imagine

them functioning differently. But productivity tools do work. They improve collaboration,

organization and communication. They alert management to blockers and reduce those

little friction points that leave developers feeling frustrated and slow processes down.

Consider these stats from Zenhub’s 2022 Software Developer Happiness Report

“Productivity tools...”

Improve the quality of collaboration
within my team

Improve my dev team’s productivity

Keep team members on a task

Are used effectively within my
organization

Help communicating with operation
teams or other bus. stakeholders

Effectively update management
without interrupting my workflow

50%

46%

44%

42%

41%

41%

43%

46%

46%

46%

47%

47%

6%

6%

8%

10%

9%

10%

strongly agree somewhat agree somewhat disagree strongly disagree

Developers positively rate many aspects of productivity tools, including 88% who agree that the tools help
them update management without interrupting workflow.
Source: Zenhub’s 2022 Software Developer Happiness Report

https://blog.zenhub.com/what-makes-devs-happy-is-no-longer-a-mystery-the-2022-developer-happiness-report-is-in/
https://blog.zenhub.com/what-makes-devs-happy-is-no-longer-a-mystery-the-2022-developer-happiness-report-is-in/

Code smarter, not harderWHITE PAPER23

Increase your team’s
productivity now with Garden

You can invest in a large team and

spend a year or more building your own

platform to reduce developer frustration

and increase productivity. Or you can get

started with Garden today.

Garden.io was named a 2022 Gartner

“Cool Vendor in Platform Engineering for

Improving Developer Experience,” in a

report authored by analysts Manjunath

Bhat, Arun Chandrasekaran, and Stephen

White. And it’s been adopted by Fortune

500 brands and customers known

for innovation and a great developer

experience. In fact, one Garden customer

increased its internal developer Net

Promoter Score (NPS) by 50% in nine

months.

Designed by developers, Garden

eliminates the time-consuming back-

and-forth between tools, reduces friction

and improves the developer experience.

By stitching the tools your team needs

together, we create a central hub that

supports CI/CD and automation.

With Garden, you can keep the tools you

like, including internal tools. We help you

connect and make better use of the tools

you already invest in, so your team can

build, deploy, run and test smoothly.

Garden provides the insights engineering managers need

Engineering managers need timely data to fix friction points and bottlenecks before they

become a pain point for developers. And they want insights that help them forecast speed

of delivery and keep projects on track.

Simply by using Garden, developers generate a ton of neatly structured data. Garden’s

Stack Analytics and Stack Streams give you access to this data, both in real-time and in

aggregate. You can see logs for everything going on in your project; understand the flows

between all your builds, deployments and tests; and get more actionable information at

every turn.

We’d love to show how easily Garden can
integrate with your existing stack and alleviate

pain points for you and your developers.

In the meantime, show your developers some
love and invite them to use Garden’s free tool
built for developers by developers. If they use it

and love it, they’ll have you to thank.

LET’S SCHEDULE SOME TIME TO TALK →

Copyright 2023, Garden.io, all rights reserved.

https://docs.garden.io/basics/quickstart?utm_source=whitepaper_2&utm_medium=CTA
https://garden.io/contact?utm_source=whitepaper_2&utm_medium=CTA

